
Previously at MP…

• Edge detection (Canny)

• Fitting parametric models of shapes by voting (Hough transform)

• Lines

• Circles

• General shapes
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Parametric models: Forward application

• Transformation parameterized by (many) parameters

• Example: transform 𝒙𝑖 into 𝒙𝑖
′ by a function 𝑓(𝒙; 𝒑)
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𝒙𝑖
′ = 𝐑𝒙𝑖 + 𝑻



Parametric models: Use cases

• Inverse problem: ``Given a set of correspondences, what are the 
parameters of the transformation?’’

• Assuming the transformation can be well approximated by 𝑓(𝒙; 𝒑), what 
are the best parameter values for 𝒑?

𝑓(𝒙; 𝒑)

Source keypoint Destination keypoint
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Parametric models: Use cases

• Best parameter values: those that minimize the projection error

𝑓(𝒙; ෥𝒑)

Stitched images:
Coordinates of all pixels in the left-hand
image transformed by 𝑓(𝑥; ෤𝑝)
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Parametric models: Use cases

3D pose estimation problem

https://www.youtube.com/watch?v=i3cg8spZCrY

TLD3.0 - 3D Tracking of Rigid Objects (ICCV 2017 demo)
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Find rotation+translation of the model in 3D, such 
that the 2D projections of the 3D model parts into the 
camera, match the observed image of a car.

3D pose estimation in action

https://www.youtube.com/watch?v=i3cg8spZCrY


Least squares: Line fitting

• Data: { 𝑥1, 𝑦1 , … , (𝑥𝑁 , 𝑦𝑁)}

• Line equation:
𝑦 = 𝑓(𝑥; 𝒑) = 𝑥𝑝1 + 𝑝2

• Parameters:
𝒑 = 𝑝1, 𝑝2

𝑇

• Projection error at 𝑖-th correspondence:
𝜀𝑖 = 𝑓 𝑥𝑖; 𝒑 − 𝑦𝑖

• The cost function (goodness of fit):

• Best parameters: 

(𝑥𝑖 , 𝑦𝑖)
𝜀𝑖

Problem formulation

𝑦

𝑥
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A 1D minimization
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Least squares: Line fitting

Strategy:

1. Rewrite the cost function 𝐸(𝒑) into a vector-matrix form

2. Take derivative w.r.t. 𝒑, set to zero, solve for 𝒑.

(𝑥𝑖 , 𝑦𝑖)

𝜀𝑖

𝑦

𝑥

𝑓(𝑥; 𝒑) = 𝑥𝑝1 + 𝑝2

𝒑 = 𝑝1, 𝑝2
𝑇

𝜀𝑖 = 𝑓 𝑥𝑖; 𝒑 − 𝑦𝑖
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Least squares: Line fitting

Strategy:

• Rewrite the cost function 𝐸(𝒑) into a vector-matrix form

• Take derivative w.r.t. 𝒑, set to zero, solve for 𝒑.

Normal equation:

Pseudoinverse:

Solution:
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A cookbook for normal equations:

1. Define the set of corresponding points
𝒙𝑖 𝑖=1:𝑁 , 𝒙𝑖

′
𝑖=1:𝑁

2. Define the linear transformation
𝑓 𝒙; 𝒑 : 𝒙 → 𝒙′

3. Define the per-point error and stack all errors into a single vector 𝜺:

𝜺𝑖 = 𝑓 𝒙𝑖; 𝒑 − 𝒙𝑖’

4. Rewrite the error into a form 𝜺 = 𝑨𝒑 − 𝒃

5. Solve by pseudoinverse: 𝒑 = 𝑨†b

Matlab:  p = A \ b
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• Task: Align two images based on correspondences

• Assume a similarity transform (scale, rotation, translation)

• The similarity transform is parameterized by (See Szeliski, Section 2.1.2):

𝒙′ = 𝑓(𝒙; 𝒑)

Least squares: A simple image alignment
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• Data: { 𝑥1, 𝑦1 , … , (𝑥𝑁 , 𝑦𝑁)}

• All points are not equally 
accurately measured!

• Weight at each point: 𝑤𝑖

• Projection error at 𝑖-th
correspondence:
𝜀𝑖 = 𝑓 𝑥𝑖; 𝒑 − 𝑦𝑖

• A weighted cost:

• Best parameters: 

Problem formulation
(𝑥𝑖 , 𝑦𝑖)

𝜀𝑖

𝑦

𝑥

Weighted least squares: Line fitting
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Weighted least squares: Line fitting

Strategy:

• Rewrite the cost function 𝐸(𝒑) into a vector-matrix form

• Take derivative w.r.t. 𝒑, set to zero, solve for 𝒑.

𝑓(𝑥; 𝒑) = 𝑥𝑝1 + 𝑝2

𝒑 = 𝑝1, 𝑝2
𝑇

𝜀𝑖 = 𝑓 𝑥𝑖; 𝒑 − 𝑦𝑖

(𝑥𝑖 , 𝑦𝑖)

𝜀𝑖

𝑦

𝑥

17



Weighted least squares: Line fitting

Strategy:

• Rewrite the cost function 𝐸(𝒑) into a vector-matrix form

• Take derivative w.r.t. 𝒑, set to zero, solve for 𝒑.

Normal equation
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1. Define a weighted set of corresponding points
𝒙𝑖 𝑖=1:𝑁 , 𝒙𝑖

′
𝑖=1:𝑁, 𝑤𝑖 𝑖=1:𝑁

2. Define the linear transformation
𝑓 𝒙; 𝒑 : 𝒙 → 𝒙′

3. Rewrite the error into a form 𝜺 = 𝑨𝒑 − 𝒃

4. Create a weight matrix 𝑾 as
𝑊 = 𝑑𝑖𝑎𝑔([𝒘1

𝑇 , … ,𝒘𝑁
𝑇 ])

with 𝒘𝑖
𝑇 = 𝑤𝑖 1, . . , 1 1×𝑑

5. Solve by :

Note: 𝒙′ ∈ ℝ𝑑 , 𝑤 ∈ ℝ1

Note: think about why 

are 𝒘𝑖
𝑇 vectors of same 

dimensionality as the 
points 𝒙′.

A cookbook for weighted least squares:
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NOTE

• Weighted least squares can be used for 
NONLINEAR/ROBUST least-squares problems as well!

• Robust least squares, for example can be implemented 
by iterative algorithm that applies a weighted least 
squares solver

• See the slides on e-classroom if you’re interested 
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Robust least squares

• Quadratic cost function behaves poorly with outliers:

• To see where the problem lies, we will have to rewrite our cost function 

into a general form.

• The cost can be generally written as:

• For ordinary least squares we had:  ℎ 𝜺𝑖 = ||𝜺𝑖||
2

Ideal fit Corrupted fit
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Robust least squares

• For a cost function with robust error function ℎ(𝜀𝑖)

• It is possible to find an equivalent weighted 𝐿2 cost

with                       and                              .

• Problems: 

1. Weights depend on the errors incurred by the optimal parameters of our model.

2. But the parameters are unknown and so are the weights.

• Solution: Can apply an iterative approach

that will converge as long as ℎ 𝜖 is concave1. 

R. Hartley, Robust Optimization Techniques in Computer Vision, Session 3,ECCV2014 tutorials

1Aftab, K. and Hartley, R., Convergence of Iteratively Re-weighted Least Squares to Robust M-estimators, WACV 2015 
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http://www2.maths.lth.se/matematiklth/personal/fredrik/eccv2014_tutorial.html


Iterative reweighted least squares

1. Set all the weights to 𝑤𝑖
𝑡−1 = 1.

2. Solve for 𝒑𝑡 by the weighted least squares problem.

3. Using the estimated parameters 𝒑𝑡 re-calculate per-point 

projection errors 𝜺𝑖
𝑡.

4. Using the projection errors re-calculate new weights 𝑤𝑖
𝑡 from:

5. Go back to step 2 and continue until the change in parameters is 
negligibly small (convergence).

For an instructive discussion on parameters of the Huber cost function from data, please see:
J. Fox, Robust Regression--Appendix to An R and S-PLUS Companion to Applied Regression, 2002, ”1.1 Objective Functions”.

Note: (⋅)𝑡 indicates a step of iteration in the iterative reweighted least squares.
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http://cran.r-project.org/doc/contrib/Fox-Companion/appendix-robust-regression.pdf


Constrained least squares

• Often we will seek parameters 𝒑 that satisfy constraints.

• Reconsider line-fitting example, but this time we’ll minimize 
perpendicular distances!

• Re-parameterize:
𝒑 = 𝑝1, 𝑝2, 𝑝3

𝑇

• Distance of a point to line:
||𝜺𝒊||

𝟐 = (𝑥𝑖𝑝1 + 𝑦𝑖𝑝2 − 𝑝3)
2

• Let’s minimize:

𝑝3

𝑛 = [𝑝1, 𝑝2]

25



Constrained least squares
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• Distance of a point to line:
||𝜺𝒊||

𝟐 = (𝑥𝑖𝑝1 + 𝑦𝑖𝑝2 − 𝑝3)
2

• Let’s minimize:



Constrained least squares

• The solution:

• Trivial solution: 𝒑 = 𝟎

• A nontrivial solution is obtained by constraint 𝒑
2
= 1

𝒑 = 𝑝1, 𝑝2, 𝑝3
𝑇

||𝜺𝒊||
𝟐 = (𝑥𝑖𝑝1 + 𝑦𝑖𝑝2 − 𝑝3)

2

𝑝3

𝑛 = [𝑝1, 𝑝2]
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Back to line fitting example…
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• Distance of a point to line:
||𝜺𝒊||

𝟐 = (𝑥𝑖𝑝1 + 𝑦𝑖𝑝2 − 𝑝3)
2

• Let’s minimize:



Constrained least squares

• The solution:

• Trivial solution: 𝒑 = 𝟎

• A nontrivial solution is obtained by constraint 𝒑
2
= 1

• Taking the derivative of a Langrangian and setting to 0:

• The solution is the eigenvector of (𝑨𝑇𝑨) corresponding to the smallest 
eigenvalue.

• Actually, it can be shown that this is also the eigenvector corresponding to 
the smallest eigenvalue of 𝑨. (see notes on “Avoid computing ATA”)

Homogenous equation!
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In case you are not confident with Lagrange 
multipliers, see this excellent tutorial!

https://www.khanacademy.org/math/multivariable-calculus/applications-of-multivariable-derivatives/lagrange-multipliers-and-constrained-optimization/v/constrained-optimization-introduction


• Problems that can be written as systems of equations 
(normal equations):
𝑨𝒑 = 𝒃

(if you have weights on equations, then 𝐖𝑨𝒑 = 𝐖𝒃)

can be solved by ordinary LS or IRWLS

• Problems that result in a homogenous system:
𝑨𝒑 = 𝟎

can be solved by putting the constraint 𝒑
2
= 1, the solution is the 

eigenvector corresponding to the smallest eigenvalue. 
(If required, rescale the solution for 𝒑)

Matlab:  p = A \ b ;

Matlab:  [U,S,V] =svd(A) ; p = V(:,end) ; 

Recognizing the hammer for your nail!
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• Often nonlinear error functions are used, which cannot be minimized 
analytically in a closed form.

• Popular approaches:

• Gradient descend

• Newton‘s method

• Gauss-Newton method

• Levenberg-Marquardt

• Alternate direction method of multipliers (ADMM) [!very powerful & simple]

• More about these: 
• Fua and Lepetit: Computer Vision Fundamentals: Robust Non-Linear Least-Squares and their Applications

• Griva et al., Linear and Nonlinear Optimization (See appendix on Matrix Algebra)

• The Matrix Coockbook (List of common vector/matrix solutions)

• Forsyth, Ponce, „Computer Vision – A modern approach“, (Appendix in 2nd ed.)

For nonlinear cost functions
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http://www.youtube.com/watch?v=vj6UViKiED0&feature=endscreen&NR=1
https://web.stanford.edu/~boyd/papers/pdf/admm_slides.pdf
https://scicomp.stackexchange.com/questions/16080/intuition-behind-alternating-direction-method-of-multipliers
http://cvlabwww.epfl.ch/~fua/courses/lsq/Intro.htm
http://carlossicoli.free.fr/G/Griva_I.,_Nash_S.,_Sofer_A.-Linear_and_nonlinear_optimization-SIAM_2008.pdf
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf


• Large disagreements in only a few points (outliers) cause failure of the 
least-squares-based methods.

• The detection, localization and recognition in CV have to operate in 
significantly noisy data.

• In some cases >½ data is expected to be outliers.

• Standard methods for robust estimation can rarely deal with such a 
large proportion of outliers.

Need to deal even better with outliers

33



RANSAC

• The RANSAC algorithm (random sample consesus).

• Very popular due to its generality and simplicity.

• Can deal with large portions of outliers.

• Published in 1981 (Fischler in Bolles)

• One of the most cited papers in Computer Vision

• Many improvements proposed since!

M. A. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis 
and Automated Cartography. Comm. of the ACM, Vol 24, pp. 381-395, 1981.

34

http://www.ai.sri.com/pubs/files/836.pdf


RANSAC: Intuition by line fitting

• A good estimate of our model should have a strong support in data: 
“recognize a good model when you see it”

• How to find a model with a strong support?

• By randomly sampling potential models.

Allowed errorAllowed error

10 point support this line! 4 point support this line!

35



RANSAC: Intuition by line fitting

• Task: Robustly estimate the most likely line

Slide credit: Jinxiang Chai36



RANSAC: Intuition by line fitting

• Task: Robustly estimate the most likely line

Randomly choose a pair of points
(Note: the smallest number of points to fit a 
line is two)

Slide credit: Jinxiang Chai37



RANSAC: Intuition by line fitting

• Task: Robustly estimate the most likely line

Fit the line to the selected points.

Slide credit: Jinxiang Chai38



RANSAC: Intuition by line fitting

• Task: Robustly estimate the most likely line

The inliers are all points whose 

error 𝜀𝑖 is lower than some 
prescribed value t𝜀.

𝜀𝑖 = |𝑓 𝑥𝑖; 𝒑 − 𝑦𝑖|

Slide credit: Jinxiang Chai

Count the number of inliers!

39



RANSAC: Intuition by line fitting

• Task: Robustly estimate the most likely line

Repeat N-iterations, or, until the support 
(i.e., number of inliers) becomes strong 
enough 
(actually this is an oversimplification).

Slide credit: Jinxiang Chai40



Previously at MP…

• Least squares parameters estimation

• Ordinary + Weighted (+ Robust) + Constrained Least squares

• Normal equations: 𝑨𝒙 = 𝒃→ pseudoinverse

• Homogeneous system: 𝑨𝒙 = 𝟎→ eigenvectors
41



RANSAC: line fitting

• Another example

42



A general setting

1. Define the set of “potentially” corresponding points:
𝒙𝑖 𝑖=1:𝑁 , 𝒙𝑖

′
𝑖=1:𝑁

2. Define the transformation model: 𝑓 𝒙; 𝒑 : 𝒙 → 𝒙′

In this example, let 𝑓 𝒙; 𝒑 be a simple translation + scaling.

43

Important: Some correspondences are correct and some are NOT!



A simple RANSAC loop

1. Randomly select the smallest group of correspondences, from which we 
can estimate the parameters of our model.

2. Fit the parametric model      to the selected correspondences (e.g., by LS). 

𝑓 𝒙; 𝒑 : 𝒙 → 𝒙′

𝒙𝑖 𝑖=1:𝑁 , 𝒙𝑖
′
𝑖=1:𝑁

෤𝑝

In this example, let 𝑓 𝒙; 𝒑
be a simple translation + 
scaling.
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A simple RANSAC loop

1. Randomly select the smallest group of correspondences, from which we 
can estimate the parameters of our model.

2. Fit the parametric model      to the selected correspondences (e.g., by LS).

3. Project all other points and count how many of all correspondences are in 
agreement with the fitted model – number of inliers.

• Remember the model parameters ෤𝑝𝑜𝑝𝑡 that maximize the number of 

inliers.

𝑓 𝒙; 𝒑 : 𝒙 → 𝒙′

𝒙𝑖 𝑖=1:𝑁 , 𝒙𝑖
′
𝑖=1:𝑁

෤𝑝

In this example, let 𝑓 𝒙; 𝒑
be a simple translation + 
scaling.
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The choice of parameters

• How many correspondences ′′𝑠′′ are required?

• Typically the smallest number that allows estimating the model parameters, i.e., 
as many as the model parameters.

• Threshold distance t for identifying the inliers

• Choose t, such, that the probability that an inlier falls below the threshold is 
equal to pw. For example (pw=0.95)

• Assuming a Gaussian noise on the measurements.  

The noise standard dev. σ: t=2σ

• Number of sampling iterations N

• Chose N such, that the probability
p of drawing a sample with all 
inliers at least once is high enough.

47



The choice of parameters: N

• Setting the number of sampling iterations N:

• Assume we know the proportion e of outliers (probability of selecting an outlier at random).

• Choose N such, that the probability of drawing a sample set with 
all inliers at least once in N draws is p,(e.g.,  p=0.99).

• Derive the probability of drawing a bad sample in N trials, 1 − p = 𝑝𝑏𝑎𝑑
𝑁, and expose N

• Probability of choosing a single inlier: 
• Probability of an all-inlier sample:
→ s-times sample an inlier:   

• Probability, of a bad sample:
→ at least one of s not an inlier: 

• Probability of always drawing a bad sample in N trials:

1 - e

(1 – e)s

[1- (1 – e)s]
(1- (1 – e)s)N

48



The choice of parameters: N

Number of iterations N required to sample an inlying model with 𝑠
parameters at least once with probability 𝑝 if the proportion of outliers is 𝑒:

portion of outliers: e

s 5% 10% 20% 25% 30% 40% 50%

2 2 3 5 6 7 11 17

3 3 4 7 9 11 19 35

4 3 5 9 13 17 34 72

5 4 6 12 17 26 57 146

6 4 7 16 24 37 97 293

7 4 8 20 33 54 163 588

8 5 9 26 44 78 272 1177

Tabulated values of N for 𝑝 = 0.99

s

N

e=0.5

e=0.3
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After RANSAC: Refit by LS

• RANSAC splits the data into inliers and outliers, and calculates the 
model parameters using a minimal number of correspondences.

• Improve the model parameters by applying least squares to the inliers.

50



Beyond the simple RANSAC

• A great deal of research was invested by many researchers into 
improving RANSAC

• Finding the right solution faster & with better resiliency to outliers

• Further reading:

• PROSAC (state of the art, better chooses the order of samples)

• MAGSAC++ (current state of the art – top performance on benchmarks)

• Excellent tutorial in recent RANSAC developments and toolboxes: 
RANSAC in 2020: A CVPR Tutorial, CVPR 2020 (Video presentations available!)
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http://cmp.felk.cvut.cz/~matas/papers/chum-prosac-cvpr05.pdf
https://arxiv.org/abs/1912.05909
http://cmp.felk.cvut.cz/cvpr2020-ransac-tutorial/


RANSAC: Summary

• Pros

• Very simple and general 

• Applicable to many real-life problems

• Often used in practice

• Cons

• Requires setting some parameters (modern methods make it simpler)

• Potentially many iterations required to find the optimum.

• Fails at very small number of inliers.

• In some cases more accurate procedures, that do not require brute-force 
sampling, can be found.
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Fitting: Challenges

• If we know the inliers how to estimate the parameters?
• Least squares

• What if our data includes outliers?
• Robust least squares, RANSAC

• What if we have multiple instances of our model (e.g., multiple lines)?
• Apply voting: sequential RANSAC, Hough transform

• What if we have multiple models (e.g., unknown degree of a polynomial)?
• Apply model selection (e.g., MDL, BIC, AIC)

• Complicated nonparametric models
• Generalized Hough (GHT)

• Iterative Closest Point, (ICP) == iterative local least squares
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http://www.google.si/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCQQFjAA&url=http://www.cs.tau.ac.il/~dcor/Graphics/adv-slides/ICP.ppt&ei=Zck3VM_6Mqau7Aaa54DQDg&usg=AFQjCNFmxcHyXI_B77fbye-s0yjIYcIo6A&sig2=M8vH09h01eofAX8Jv46poA&bvm=bv.77161500,d.ZGU&cad=rja


Further reading

• A simple and interesting way to iteratively fit a complicated model to data:
Iterative Closest Point method
Matlab implementation: ICP

• A very nice and accessible tutorial on nonlinear optimization in computer 
vision: http://cvlabwww.epfl.ch/~fua/courses/lsq/Intro.htm
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http://www.google.si/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCQQFjAA&url=http://www.cs.tau.ac.il/~dcor/Graphics/adv-slides/ICP.ppt&ei=Zck3VM_6Mqau7Aaa54DQDg&usg=AFQjCNFmxcHyXI_B77fbye-s0yjIYcIo6A&sig2=M8vH09h01eofAX8Jv46poA&bvm=bv.77161500,d.ZGU&cad=rja
http://www.mathworks.com/matlabcentral/fileexchange/27804-iterative-closest-point
http://cvlabwww.epfl.ch/~fua/courses/lsq/Intro.htm
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