Previously at MP...

* Edge detection (Canny)

* Fitting parametric models of shapes by voting (Hough transform)
* Lines
* Circles
* General shapes




Univerza v Liubljani

ViC@®S
bt sualgnitive
R ystemslab

Machine perception
Fitting parametric models

Matej Kristan

Laboratorij za Umetne Vizualne Spoznavne Sisteme,
Fakulteta za ra¢unalnistvo in informatiko,

Univerza v Ljubljani




Parametric models: Forward application

* Transformation parameterized by (many) parameters
I __ .
X, — f(X’ia p)

* Example: transform x; into x; by a function f(x; p)
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Parametric models: Use cases

* Inverse problem: 'Given a set of correspondences, what are the
parameters of the transformation?”
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O Source keypoint O Destination keypoint

* Assuming the transformation can be well approximated by f (x; p), what
are the best parameter values for p?



Parametric models: Use cases

* Best parameter values: those that minimize the projection error

Stitched images:
Coordinates of all pixels in the left-hand
image transformed by f(x; D)




Parametric models: Use cases

3D pose estimation problem 3D pose estimation in action

2D points in the image
TLD3.0 - 3D Tracking of Rigid Objects (ICCV 2017 demo)
Find rotation+translation of the model in 3D, such https://www.youtube.com/watch?v=i3cg8spZCrY

that the 2D projections of the 3D model parts into the
camera, match the observed image of a car.



https://www.youtube.com/watch?v=i3cg8spZCrY

Least squares: Line fitting

Problem formulation
* Data: {(x1; yl)' LD (xN' yN)}
* Line equation:
y =f(x;p) = xp; + p
* Parameters:

P = [pl' pZ]T
* Projection error at i-th correspondence:
& =fx;p)—yi N
* The cost function (goodness of fit): E(p) = Z 87;2

1=1

* Best parameters: P = arg min E(P)
P



. A 1D minimization




Least squares: Line fitting

Strategy:
1. Rewrite the cost function E(p) into a vector-matrix form
2. Take derivative w.r.t. p, set to zero, solve for p.

fC;p) =xp; +p2 + Yy
p — [pl' pZ]T

& =f(x;p)—yi

N
E(P) — 21 5732




Least squares: Line fitting

Strategy:
* Rewrite the cost function E(p) into a vector-matrix form

* Take derivative w.r.t. p, set to zero, solve for p.
2

9 oy ] [ 29,1 ]
B =S (w-tmel [P ]) == 2 [+ ] 2 [ ] = 1e e aer
YN | | rn, 1
Normal equation:
dE(®P) _ 9AT A+ _ 9ATH —
dp 2ATAp—2A"b=0 Pseudoinverse:
AT = (ATA)_lAT
Solution: D
p=(ATA)"'ATb = A'b A ="USVT
AT =VvVS—1lyu?
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A cookbook for normal equations:

1. Define the set of corresponding points
xi}izin, xi}izen
2. Define the linear transformation
fp):x—x
3. Define the per-point error and stack all errors into a single vector &:

LA
E(p) = 2«
i=1

T T T]T
g =flx;p) —x/

E = [817782 7"'78N

(e
(s €i °
4. Rewrite the errorintoaforme=Ap—»b Note: point f-\o(\a\'\w
o\e: e
5. Solve by pseudoinverse: p = ATb of 5a™Me ?mts X -

Matlab: p=A\b



Least squares: A simple image alignment

e Task: Align two images based on correspondences

e Assume a similarity transform (scale, rotation, translation)

x' = f(x;p)
* The similarity transform is parameterized by (see Szeliski, Section 2.1.2):
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Weighted least squares: Line fitting

Problem formulation
A

* Data: {(xl' yl)' "ty (xN; yN)} Y
e All points are not equally
accurately measured!

* Weight at each point: w;

* Projection error at i-th
correspondence:

& = flx;p) — v
* Aweighted cost: E(p) = Z,fil w; ;2

* Best parameters: p = arg min F(p)
P
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Weighted least squares: Line fitting

Strategy:
* Rewrite the cost function E(p) into a vector-matrix form
* Take derivative w.r.t. p, set to zero, solve for p.

f;p) =xp; +p2 A
P = [P1:P2]T
& = fx;p) — i

E(p) = 30 we;?

~

p = arg min F(p)
P




Weighted least squares: Line fitting

Strategy:
* Rewrite the cost function E(p) into a vector-matrix form
* Take derivative w.r.t. p, set to zero, solve for p.

E(p) = >, w, (y ~ w1 [ b DQ

P2
- w; 0 0o 11 €1 |
Ep)=lei,-»en) | 0 . 0o : — cITWe
I 0 0 wy 1 L en |

dgép) — 2ATWAp — 2ATWb =0 <— Normal equation

p=(ATWA)ATWbD
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A cookbook for weighted least squares:

1. Define a weighted set of corresponding points
xitizin, (i tizon, Wiz Note: x" € R%, w € R!
2. Define the linear transformation
fp):x—x
3. Rewritetheerrorintoaforme=Ap—>b
4. Create a weight matrix W as

W = diag([w{, . WED Note: think about why
. T are w; vectors of same
with w; = w;[1,.., 1]1xq dimensionality as the
points x'. o
. the
5. Solveby: p=(ATWA) 1ATWbDb To practice: SO\r\‘I\i)\e
” a
“sa'\\boat ex



NOTE

* Weighted least squares can be used for
NONLINEAR/ROBUST least-squares problems as well!

* Robust least squares, for example can be implemented
by iterative algorithm that applies a weighted least
squares solver

* See the slides on e-classroom if you’re interested



Robust least squares

* Quadratic cost function behaves poorly with outliers:

1 Ideal fit
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* To see where the problem lies, we will have to rewrite our cost functio
into a general form.

* The cost can be generally written as:  E(p) = Z,fil h(e;)

* For ordinary least squares we had: h(g;) = ||&;||?




Robust least squares

* For a cost function with robust error function h(g;)
N
E(p) = Zf,;:1 h(e:)
* Itis possible to find an equivalent weighted L, cost
N 2
Ew(p) = 2_i—1 wle)lled

with ¢y = hli‘g) and h’(g) — 82)(;) :

* Problems:

1. Weights depend on the errors incurred by the optimal parameters of our mod
2. Butthe parameters are unknown and so are the weights.

e Solution: Can apply an iterative approach
that will converge as long as h (\/ |E|) is concavel.

1Aftab, K. and Hartley, R., Convergence of Iteratively Re-weighted Least Squares to Robust M-estimators, WACV 2015
R. Hartley, Robust Optimization Techniques in Computer Vision, Session 3,ECCV2014 tutorials


http://www2.maths.lth.se/matematiklth/personal/fredrik/eccv2014_tutorial.html

Iterative reweighted least squares

1. Setall the weights tow/ ™! = 1.
Solve for pt by the weighted least squares problem.

Using the estimated parameters p' re-calculate per-point
projection errors sf.

4. Using the projection errors re-calculate new weights Wl-t from:

W — h’és) b (g) = 8?9(;)

5. Go back to step 2 and continue until the change in parameters is
negligibly small (convergence).

Note: (+)! indicates a step of iteration in the iterative reweighted least squares.

For an instructive discussion on parameters of the Huber cost function from data, please see:
J. Fox, Robust Regression--Appendix to An R and S-PLUS Companion to Applied Regression, 2002, ”1.1 Objective Functions”.



http://cran.r-project.org/doc/contrib/Fox-Companion/appendix-robust-regression.pdf

Constrained least squares

* Often we will seek parameters p that satisfy constraints.

 Reconsider line-fitting example, but this time we’ll minimize
perpendicular distances!

E(p) =35, &l

* Re-parameterize:

P = [pl’ P2, pS]T
e Distance of a point to line:

&1 = (xip1 + yip2 — P3)?
 Let’s minimize:
N 2
E(p) = 27;:1 =
s




Constrained least squares

e Distance of a point to line:
2 _
|l&:l1* = (x;p1 + yip2 — p3)°
* Let’s minimize:

E(p) = i, |leill’




Constrained least squares

* The solution: dg(p) =2ATAp=0
P

* Trivial solution: p = 0

* A nontrivial solution is obtained by constraint le‘z =1
p = [p1, 02, 031"
l&:l|* = (xip1 + YiD2 — P3)?

E(p) =3, &l




Back to line fitting example...

e Distance of a point to line:
2 _
|l&:l1* = (x;p1 + yip2 — p3)°
* Let’s minimize:

N 2
E(p) = Zi:l 1=
ATAp = )\p




Constrained least squares

° The solution: dlfli)p) — QATAP =0 In case you are not confident with Lagrange

multipliers, see this excellent tutorial!

* Trivial solution:p =0
2
* A nontrivial solution is obtained by constraint le‘ =1

* Taking the derivative of a Langrangian and setting to O:

ATAp = \p +~—— Homogenous equation!

* The solution is the eigenvector of (AT A) corresponding to the smallest
eigenvalue.

e Actually, it can be shown that this is also the eigenvector corresponding to
the smallest eigenvalue of A. (see notes on “Avoid computing ATA”)


https://www.khanacademy.org/math/multivariable-calculus/applications-of-multivariable-derivatives/lagrange-multipliers-and-constrained-optimization/v/constrained-optimization-introduction

Recognizing the hammer for your nail!




For nonlinear cost functions

 Often nonlinear error functions are used, which cannot be minimized
analytically in a closed form.

* Popular approaches:
* Gradient descend

Computer Yisio_n

d NEWtonlS methOd Linear and Nonlinear

Optimization

e Gauss-Newton method

* Levenberg-Marquardt
e Alternate direction method of multipliers (ADMM) [!lvery powerful & simple]

e More about these:

e Fua and Lepetit: Computer Vision Fundamentals: Robust Non-Linear Least-Squares and their Applications

* Grivaetal, Linear and Nonlinear Optimization (See appendix on Matrix Algebra)

* The Matrix Coockbook (List of common vector/matrix solutions)
*  Forsyth, Ponce, ,,Computer Vision — A modern approach®, (Appendix in 2nd ed.)



http://www.youtube.com/watch?v=vj6UViKiED0&feature=endscreen&NR=1
https://web.stanford.edu/~boyd/papers/pdf/admm_slides.pdf
https://scicomp.stackexchange.com/questions/16080/intuition-behind-alternating-direction-method-of-multipliers
http://cvlabwww.epfl.ch/~fua/courses/lsq/Intro.htm
http://carlossicoli.free.fr/G/Griva_I.,_Nash_S.,_Sofer_A.-Linear_and_nonlinear_optimization-SIAM_2008.pdf
https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

Need to deal even better with outliers

* Large disagreements in only a few points (outliers) cause failure of the
least-squares-based methods.

* The detection, localization and recognition in CV have to operate in
significantly noisy data.

* In some cases > data is expected to be outliers.

e Standard methods for robust estimation can rarely deal with such a
large proportion of outliers.



RANSAC

 The RANSAC algorithm (random sample consesus).

* Very popular due to its generality and simplicity.
e Can deal with large portions of outliers.

* Published in 1981 (Fischler in Bolles)

* One of the most cited papers in Computer Vision
* Many improvements proposed since!

M. A. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis
and Automated Cartography. Comm. of the ACM, Vol 24, pp. 381-395, 1981.



http://www.ai.sri.com/pubs/files/836.pdf

RANSAC: Intuition by line fitting

* A good estimate of our model should have a strong support in data:
“recognize a good model when you see it”
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e How to find a model with a strong support?
By randomly sampling potential models.



RANSAC: Intuition by line fitting

* Task: Robustly estimate the most likely line




RANSAC: Intuition by line fitting

* Task: Robustly estimate the most likely line

®
®
®
(O]
®
®
O ¢ o
®
o o Randomly choose a pair of points
(Note: the smallest number of points to fit a
o line is two)



RANSAC: Intuition by line fitting

* Task: Robustly estimate the most likely line

Fit the line to the selected points.




RANSAC: Intuition by line fitting

* Task: Robustly estimate the most likely line

Count the number of inliers!
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® The inliers are all points whose
® ° error &; is lower than some
® prescribed value t..

& = |f(xi;p) — vl
o slide credit: Jinxiang Chai



RANSAC: Intuition by line fitting

* Task: Robustly estimate the most likely line

Repeat N-iterations, or, until the support
(i.e., number of inliers) becomes strong
enough

(actually this is an oversimplification).

7
7
7
7
'
7
7



Previously at MP...

* Least squares parameters estimation

* Ordinary + Weighted (+ Robust) + Constrained Least squares
* Normal equations: Ax = b = pseudoinverse

* Homogeneous system: Ax = 0 = eigenvectors



RANSAC: line fitting

° An Other exam ple iter=0, maxiter=10000->10000 support=16|0
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A general setting

1. Define the set of “potentially” corresponding points:
xXi}iz1v  (Xidiz1n
2. Define the transformation model: f(x;p): x = x’

In this example, let f(x; p) be a simple translation + scaling.

Important: Some correspondences are correct and some are NOT!



A simple RANSAC loop

{Xi}i=1n {xi}i:m

fx;p):x - x'

1. Randomly select the smallest group of correspondences, from which we
can estimate the parameters of our model.

2. Fitthe parametric model p to the selected correspondences (e.g., by LS).




A simple RANSAC loop

{Xi}i=1n {xi}i:m

fx;p):x - x'

1. Randomly select the smallest group of correspondences, from which we
can estimate the parameters of our model.

2. Fit the parametric model P to the selected correspondences (e.g., by LS).

3. Project all other points and count how many of all correspondences are in
agreement with the fitted model — number of inliers.

* Remember the model parameters p,,,; that maximize the number of
inliers.



The choice of parameters

n_r

e How many correspondences "'s' are required?

e Typically the smallest number that allows estimating the model parameters, i.e.,
as many as the model parameters.

 Threshold distance t for identifying the inliers

* Choose t, such, that the probability that an inlier falls below the threshold is
equal to p . For example (p,=0.95)

* Assuming a Gaussian noise on the measurements.
The noise standard dev. 0: t=20

1

e Number of sampling iterations N

e Chose N such, that the probability
p of drawing a sample with all
inliers at least once is high enough.

1

oo 01 02 03 04




The choice of parameters: N

e Setting the number of sampling iterations N:

e Assume we know the proportion e of outliers (probability of selecting an outlier at random).

e Choose N such, that the probability of drawing a sample set with
all inliers at least once in N draws is p,(e.g., p=0.99).

 Derive the probability of drawing a bad sample in N trials, 1 — p = p, 4", and expose N
* Probability of choosing a single inlier: 1 -e
* Probability of an all-inlier sample:
-> s-times sample an inlier: (1 - e)s
* Probability, of a bad sample:
—> at least one of s not an inlier: [1- (1 —e)]
* Probability of always drawing a bad sample in N trials: (1- (1 —e)$)N

l-p=(1-(1-¢)" = N= logl(cig—(il_fg)s)
RS



The choice of parameters: N

Number of iterations N required to sample an inlying model with s
parameters at least once with probability p if the proportion of outliers is e:

Prob. of selecting at least one uncontaminated sample p=0.99

. . . . . . —e=05 }
- - - - : - 0.3
NS00 | e

portion of outliers: €
5% 10% 20% 25% 30% 40% 50%

S

2 2 3 5 6 7 11 17
3 3 4 7 9 11 19 35
4 3 5 9 13 17 34 72
5 4 6 12 17 26 57 146
6 4 7 16 24 37 97 293
7 4 8 20 33 54 163 588
8 3 9 26 44 /8 272 1177

Tabulated values of N forp = 0.99




After RANSAC: Refit by LS

 RANSAC splits the data into inliers and outliers, and calculates the
model parameters using a minimal number of correspondences.

* Improve the model parameters by applying least squares to the inliers.




Beyond the simple RANSAC

* A great deal of research was invested by many researchers into
improving RANSAC

* Finding the right solution faster & with better resiliency to outliers

* Further reading:
 PROSAC (state of the art, better chooses the order of samples)

e MAGSAC++ (current state of the art — top performance on benchmarks)

* Excellent tutorial in recent RANSAC developments and toolboxes:
RANSAC in 2020: A CVPR Tutorial, CVPR 2020 (Video presentations available!)



http://cmp.felk.cvut.cz/~matas/papers/chum-prosac-cvpr05.pdf
https://arxiv.org/abs/1912.05909
http://cmp.felk.cvut.cz/cvpr2020-ransac-tutorial/

RANSAC: Summary

* Pros
* Very simple and general
* Applicable to many real-life problems
e Often used in practice

e Cons
* Requires setting some parameters (modern methods make it simpler)

e Potentially many iterations required to find the optimum.
* Fails at very small number of inliers.

* |n some cases more accurate procedures, that do not require brute-force
sampling, can be found.




Fitting: Challenges

e |f we know the inliers how to estimate the parameters?
* Least squares

e What if our data includes outliers?
* Robust least squares, RANSAC

e What if we have multiple instances of our model (e.g., multiple lines)?
* Apply voting: sequential RANSAC, Hough transform

e What if we have muItipIe models (e.g., unknown degree of a polynomial)?
* Apply model selection (e.g., MDL, BIC, AIC)

 Complicated nonparametric models

* Generalized Hough (GHT)
* |terative Closest Point, (ICP) == iterative local least squares



http://www.google.si/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCQQFjAA&url=http://www.cs.tau.ac.il/~dcor/Graphics/adv-slides/ICP.ppt&ei=Zck3VM_6Mqau7Aaa54DQDg&usg=AFQjCNFmxcHyXI_B77fbye-s0yjIYcIo6A&sig2=M8vH09h01eofAX8Jv46poA&bvm=bv.77161500,d.ZGU&cad=rja

Further reading

 Asimple and interesting way to iteratively fit a complicated model to data:
lterative Closest Point method
Matlab implementation: ICP

* Avery nice and accessible tutorial on nonlinear optimization in computer
vision: http://cvlabwww.epfl.ch/~fua/courses/Isq/Intro.htm



http://www.google.si/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCQQFjAA&url=http://www.cs.tau.ac.il/~dcor/Graphics/adv-slides/ICP.ppt&ei=Zck3VM_6Mqau7Aaa54DQDg&usg=AFQjCNFmxcHyXI_B77fbye-s0yjIYcIo6A&sig2=M8vH09h01eofAX8Jv46poA&bvm=bv.77161500,d.ZGU&cad=rja
http://www.mathworks.com/matlabcentral/fileexchange/27804-iterative-closest-point
http://cvlabwww.epfl.ch/~fua/courses/lsq/Intro.htm
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The Matrix Cookbook

* List of common vector/matrix solutions
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